Frequency modulation and Amplitude modulation
Frequency modulation (FM) conveys information over a carrier wave by varying its instantaneous frequency (contrast this with amplitude modulation, in which the amplitude of the carrier is varied while its frequency remains constant). In analog applications, the difference between the instantaneous and the base frequency of the carrier is directly proportional to the instantaneous value of the input signal amplitude. Digital data can be sent by shifting the carrier's frequency among a set of discrete values, a technique known as frequency-shift keying.
Frequency modulation can be regarded as phase modulation where the carrier phase modulation is the time integral of the FM modulating signal.
Amplitude modulation (AM) is a technique used in electronic communication, most commonly for transmitting information via a radio carrier wave. AM works by varying the strength of the transmitted signal in relation to the information being sent. For example, changes in the signal strength can be used to specify the sounds to be reproduced by a loudspeaker, or the light intensity of television pixels. (Contrast this with frequency modulation, also commonly used for sound transmissions, in which the frequency is varied; and phase modulation, often used in remote controls, in which the phase is varied)
In the mid-1870s, a form of amplitude modulation—initially called "undulatory currents"—was the first method to successfully produce quality audio over telephone lines. Beginning with Reginald Fessenden's audio demonstrations in 1906, it was also the original method used for audio radio transmissions, and remains in use today by many forms of communication—"AM" is often used to refer to the mediumwave broadcast band
Link2http://en.wikipedia.org/wiki/Amplitude_modulation#Forms_of_amplitude_modulationhttp://en.wikipedia.org/wiki/Amplitude_modulation#Forms_of_amplitude_modulationhttp://en.wikipedia.org/wiki/Frequency_modulation