Kita berlajar bersama

Saturday, November 20, 2010

Pn junction

Pn junction
p–n junction is formed by joining P-type and N-type semiconductors together in very close contact. The term junction refers to the boundary interface where the two regions of the semiconductor meet. If they were constructed of two separate pieces this would introduce a grain boundary, so p–n junctions are created in a single crystal of semiconductor by doping, for example by ion implantation, diffusion of dopants, or by epitaxy (growing a layer of crystal doped with one type of dopant on top of a layer of crystal doped with another type of dopant).






P-N junctions are elementary "building blocks" of almost all semiconductor electronic devices such as diodes, transistors, solar cells, LEDs, and integrated circuits; they are the active sites where the electronic action of the device takes place. For example, a common type of transistor, the bipolar junction transistor, consists of two p–n junctions in series, in the form n–p–n or p–n–p.
The discovery of the p–n junction is usually attributed to American physicist Russell Ohl of Bell Laboratories.[1]
Schottky junction is a special case of a p-n junction, where metal serves the role of the n-type semiconductor.



Forward bias, the p-type is connected with the positive terminal and the n-type is connected with the negative terminal.

PN junction operation in forward bias mode showing reducing depletion width. Both p and n junctions are doped at a 1e15/cm3 doping level, leading to built-in potential of ~0.59V. Reducing depletion width can be inferred from the shrinking charge profile, as fewer dopants are exposed with increasing forward bias.
With a battery connected this way, the holes in the P-type region and the electrons in the N-type region are pushed towards the junction. This reduces the width of the depletion zone. The positive charge applied to the P-type material repels the holes, while the negative charge applied to the N-type material repels the electrons. As electrons and holes are pushed towards the junction, the distance between them decreases. This lowers the barrier in potential. With increasing forward-bias voltage, the depletion zone eventually becomes thin enough that the zone's electric field can't counteract charge carrier motion across the p–n junction, consequently reducing electrical resistance. The electrons which cross the p–n junction into the P-type material (or holes which cross into the N-type material) will diffuse in the near-neutral region. Therefore, the amount of minority diffusion in the near-neutral zones determines the amount of current that may flow through the diode.
Only majority carriers (electrons in N-type material or holes in P-type) can flow through a semiconductor for a macroscopic length. With this in mind, consider the flow of electrons across the junction. The forward bias causes a force on the electrons pushing them from the N side toward the P side. With forward bias, the depletion region is narrow enough that electrons can cross the junction and inject into the P-type material. However, they do not continue to flow through the P-type material indefinitely, because it is energetically favorable for them to recombine with holes. The average length an electron travels through the P-type material before recombining is called the diffusion length, and it is typically on the order of microns.[2]
Although the electrons penetrate only a short distance into the P-type material, the electric current continues uninterrupted, because holes (the majority carriers) begin to flow in the opposite direction. The total current (the sum of the electron and hole currents) is constant in space, because any variation would cause charge buildup over time (this is Kirchhoff's current law). The flow of holes from the P-type region into the N-type region is exactly analogous to the flow of electrons from N to P (electrons and holes swap roles and the signs of all currents and voltages are reversed).
Therefore, the macroscopic picture of the current flow through the diode involves electrons flowing through the N-type region toward the junction, holes flowing through the P-type region in the opposite direction toward the junction, and the two species of carriers constantly recombining in the vicinity of the junction. The electrons and holes travel in opposite directions, but they also have opposite charges, so the overall current is in the same direction on both sides of the diode, as required.
The Shockley diode equation models the forward-bias operational characteristics of a p–n junction outside the avalanche (reverse-biased conducting) region.

Reverse biased usually refers to how a diode is used in a circuit. If a diode is reverse biased, the voltage at the cathode is higher than that at the anode. Therefore, no current will flow until the diode breaks down. Connecting the P-type region to the negative terminal of the battery and the N-type region to the positive terminal, corresponds to reverse bias. The connections are illustrated in the following diagram:
Because the p-type material is now connected to the negative terminal of the power supply, the 'holes' in the P-type material are pulled away from the junction, causing the width of the depletion zone to increase. Similarly, because the N-type region is connected to the positive terminal, the electrons will also be pulled away from the junction. Therefore the depletion region widens, and does so increasingly with increasing reverse-bias voltage. This increases the voltage barrier causing a high resistance to the flow of charge carriers thus allowing minimal electric current to cross the p–n junction.
The strength of the depletion zone electric field increases as the reverse-bias voltage increases. Once the electric field intensity increases beyond a critical level, the p–n junction depletion zone breaks-down and current begins to flow, usually by either the Zener or avalanche breakdown processes. Both of these breakdown processes are non-destructive and are reversible, so long as the amount of current flowing does not reach levels that cause the semiconductor material to overheat and cause thermal damage.
This effect is used to one's advantage in zener diode regulator circuits. Zener diodes have a certain - low - breakdown voltage. A standard value for breakdown voltage is for instance 5.6V. This means that the voltage at the cathode can never be more than 5.6V higher than the voltage at the anode, because the diode will break down - and therefore conduct - if the voltage gets any higher. This effectively regulates the voltage over the diode.
Another application where reverse biased diodes are used is in Varicap diodes. The width of the depletion zone of any diode changes with voltage applied. This varies the capacitance of the diode. For more information, refer to the Varicap article.

Link2 http://en.wikipedia.org/wiki/File:PN_Junction_Open_Circuited.sv

Ocillascope

Ocillascope
An oscilloscope (also known as a scope, CRO, DSO or, an O-scope) is a type of electronic test instrument that allows observation of constantly varying signal voltages, usually as a two-dimensional graph of one or more electrical potential differences using the vertical or 'Y' axis, plotted as a function of time, (horizontal or 'x' axis). Although an oscilloscope displays voltage on its vertical axis, any other quantity that can be converted to a voltage can be displayed as well. In most instances, oscilloscopes show events that repeat with either no change, or change slowly.
Oscilloscopes are commonly used to observe the exact wave shape of an electrical signal. In addition to the amplitude of the signal, an oscilloscope can show distortion, the time between two events (such as pulse width, period, or rise time) and relative timing of two related signals. [1]
Oscilloscopes are used in the sciences, medicine, engineering, and telecommunications industry. General-purpose instruments are used for maintenance of electronic equipment and laboratory work. Special-purpose oscilloscopes may be used for such purposes as analyzing an automotive ignition system, or to display the waveform of the heartbeat as an electrocardiogram.
Originally all oscilloscopes used cathode ray tubes as their display element and linear amplifiers for signal processing, (commonly referred to as CROs) however, modern oscilloscopes have LCD or LED screens, fast analog-to-digital converters and digital signal processors. Although not as commonplace, some oscilloscopes used storage CRTs to display single events for a limited time. Oscilloscope peripheral modules for general purpose laptop or desktop personal computers use the computer's display, allowing them to be used as test instruments.



















Link2http://en.wikipedia.org/wiki/File:WTPC_Oscilloscope-1.jpg

ELECTRONIC

Multimeter
Multimeter ialah satu alat yang disesuaikan untuk mengukur arus dan juga voltan. Terminal-terminal suatu meter, multimeter atau yang lain-lainnya, biasanya ditandakan dengan tanda-tanda + dan -. Multimeter-multimeter umumnya di susun untuk mengukur rintangan ,dan juga arus serta voltan.

Jenis Multimeter
1.Analog
2.Digital

Analog Multimeter:
Bacaan yang didapati dari penggunaan meter adalah kurang tepat terutama pengendalian oleh individu yang kurang mahir dalam mendapatkan bacaan.

Digital Multimeter:
Banyak digunakan dimasakini.
Bacaan yang diambil adalah tepat
harganya agak mahal berbanding dengan analog multuimeter.

Link2http://en.wikipedia.org/wiki/Multimeter



Funtion Generator
Funtion generator merupakan salah satu peralatan penjana gelombang yang umum. Peralatan ini digunakan secara meluas bagi mendapatkan bentuk-bentuk gelombang yang diperlukan untuk kerja-kerja pengujian.Funtion generator berupaya membekalkan gelombang seperti gelombang segiempat,segi tiga,dan juga gelombang sinus.
Bentuk gelombang yang dikhendaki dipilih,dikuatkan dan dikeluarkan pada litar varible attenuator.Selaras dengan peningkatan teknologi, funtion generator kini telah menggantikan peralatan yang boleh menjanakan gelombang sinus berikutan keupayaannya mengeluarkan bukan hanya gelombang sinus bahkan gelombang-gelombang yang lain

Tuesday, November 9, 2010

calendar

Pemantapan vto j41

Pemantapan vto j41 sedang mejalani khusus vto yang sedang dijalankan di ciast selama 3 bulan bermula pada bulan October sehingga bulan Disember 2010 siri 2/2010.Para pesertanya telah berada sini sudah hampir 8 bulan,dah lama sangat dah ni, jemu dah,

Jom Melancong

Berminat untuk melancong keluar negara.
Melihat keindahan alam ciptaan tuhan